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Abstract

Let f, g : C2
→ C be two quasi-homogeneous polynomials. We compute the V -filtration of the restriction of f to any plane

curve Ct = g−1(t) and show that the Gorenstein generator dx ∧ dy/dg is a primitive form. Using results of A. Douai and C.
Sabbah, we conclude that the base space of the miniversal unfolding of ft := f |Ct is a Frobenius manifold. At the singular fibre
C0 we obtain a non-massive Frobenius manifold.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The axiomatic of Frobenius manifolds as originally defined by Dubrovin as for example in [8] represents the
geometrisation of the celebrated WDVV or associativity equations in topological quantum field theories (cf. [6]). This
geometrisation made it plainly evident that Frobenius manifolds, and hence solutions to WDVV equations, already
existed in a very different branch of mathematics, namely singularity theory and more particularly deformations of
hypersurface singularities. This work had been carried out by Saito and Saito nearly ten years before (see [17–19]).

The other main source of Frobenius manifolds is quantum cohomology, where the solutions are a priori just formal
series and can only be geometrised after some effort if at all. A version of the mirror phenomenon is interpreted in this
framework as an isomorphism of two Frobenius manifolds, each coming from one of these two seemingly unrelated
sources. In this direction, we have the result of Barannikov [1] establishing an isomorphism between the quantum
cohomology of projective spaces and the Frobenius manifold obtained by unfolding the function x0 + · · · + xn on the
affine variety x0 · · · xn = 1.

As the mirror of Pn indicates, in order to find potential mirrors of algebraic varieties, it is not enough to look at
Frobenius manifolds produced by unfolding of germs of isolated singularities. Global functions on affine varieties are
needed. Douai and Sabbah in [7] have adapted the results of Saito to this global affine situation and, under some mild
hypotheses, reduced the existence of Frobenius–Saito structures on the base space of the miniversal unfolding to the
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existence of a primitive form for the Gauss–Manin system. They used their results to exhibit Frobenius structures for
unfoldings of non-degenerate and convenient Laurent polynomials.

In this article, we construct Frobenius manifolds for unfoldings of quasi-homogeneous functions on quasi-
homogeneous plane curves. Let f, g : C2

→ C be quasi-homogeneous polynomials with respect to the same weights.
We regard g as a family of plane curves Ct = g−1(t), and consider the restriction ft := f |Ct . We show that the
V -filtration of the Gauss–Manin system, and hence the spectral pairs, of ft can be computed from f0. In particular,
the Gorenstein generator α := dx ∧ dy/dg yields a primitive form with associated spectral number 0. It follows from
[7] that the base space of the miniversal deformation of ft can be endowed with a Frobenius manifold structure. At
t = 0, the curve C0 has an isolated singularity. We can use the dualising module ωC0 to define the Gauss–Manin
system of f0 and the Grothendieck residue pairing to construct a non-massive Frobenius manifold.

The motivation behind the construction is the following remark: the unfolding of f = xa
+ yb on Ct : xy = t ,

t 6= 0, is the mirror partner of the weighted projective line P(a, b) (for a and b coprimes, see [14,4]). At t = 0, the
multiplication and metric in our construction at the origin coincides with the orbifold cohomology of P(a, b).

2. Preliminaries

Let us recall briefly how to obtain a Frobenius manifold from a meromorphic connection. We closely follow Sabbah
(cf. [16]).

Let G → B be a vector bundle on a manifold B and let the rank of G be equal to the dimension of B, say m.
Let F denote the pull-back of G via the projection P1

× B → B. We further assume that F is equipped with a flat
meromorphic connection ∇̂ with a logarithmic pole along {0} × B and a pole of type 1 along {∞} × B.

From these initial data we obtain the following objects:

(i) The residual connection ∇ on G → B: if τ denotes the coordinate on the affine chart P1
\ {∞} the connection

matrix for ∇̂ is locally written as

Ω ∇̂
= Ωτ

dτ

τ
+

m∑
i=1

Ωi dui (1)

where Ωτ and Ωi are matrices with holomorphic entries. Here (u1, . . . , um) denotes a coordinate system on a
neighbourhood in B. The residual connection ∇ on B is given by

Ω∇
=

m∑
i=1

Ωi (0, u1, . . . , um)dui .

and the integrability of ∇̂ implies that of ∇.
(ii) The residue endomorphism of ∇̂, that is, an endomorphism R0 of F |{0}×B given in local coordinates by Ωτ (0, u).

The integrability of ∇̂ implies that R0 is covariantly constant with respect to ∇, i.e., ∇ R0 = 0.
(iii) An endomorphism R∞ of F |{∞}×B , defined (up to a constant) by the choice of a coordinate θ in P1

\ {0}. Indeed,
the connection at infinity has a pole of type 1. If we use θ = τ−1 as a coordinate in P1

\ {0} we see from (1) that
∇̂ is written near ∞ as

1
θ

(
Ωθ

dθ

θ
+

m∑
i=1

Ω ′

i dui

)
where Ωθ = −θΩτ and Ω ′

i = θΩi and this form Ω ′

i has holomorphic entries. The matrix Ωθ (0, u1, . . . , um)

defines the endomorphism R∞ of F |B . The coordinate θ (and hence τ ) will be kept fixed throughout this article.
Notice that using the canonical isomorphisms F |{∞}×B ' F |{0}×B ' G we can think of the above objects as
defined on G.

(iv) The Higgs field Φ, defined as follows. We decompose the connection ∇̂ = ∇̂
′
+ ∇̂

′′ according to the
decomposition of 1-forms π∗

P1\{0}
Ω1
P1\{0}

⊕ π∗

BΩ1
B . We write ∇̂

′′
= dB + Ω ′′ and set Φ = (θΩ ′′)|θ=0 =∑m

i=1 Ω ′

i (0, u)dui . It also depends on the choice of the coordinate θ (up to a constant).
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The integrability of ∇̂ implies the following relations between all of the above objects:

∇
2

= 0, ∇ R0 = 0
Φ ∧ Φ = 0, [R∞,Φ] = 0
∇Φ = 0, ∇ R∞ + Φ = [Φ, R0].

(2)

Let F[∗({0} × B)] denote the module of sections of F with poles along {0} × B and let F denote the locally free
OB[θ ]-module (πB)∗F[∗({0} × B)]. We further assume that F is equipped with a non-degenerate C-linear pairing

S : F ⊗ F −→ θOB[θ ]

satisfying

S(θm, m′) = θ S(m, m′) = S(m, −θm′)

Lie∂θ S(m, m′) = S(∇̂∂θ m, m′) + S(m, −∇̂∂θ m′)

Lie∂ui
S(m, m′) = S(∇̂∂ui

m, m′) + S(m, ∇̂∂ui
m′).

(3)

Expanding S as a series in θ = 0 we get

S(m, m′) = θs1
∞(m, m′) + θ2s2

∞(m, m′) + · · · .

It can be checked that s1
∞ is a non-degenerate, symmetric pairing on F/θF which is metric with respect to the

connection ∇. For a ∇-horizontal section ω of G, we define its associate period mapping ϕω : T B −→ G by

ϕω(ξ) := −Φ(ξ)(ω).

We say that ω as above is

(1) homogeneous if ω is an eigenvector of R0 and
(2) primitive if ϕω is an isomorphism.

If ω is a primitive form, we can define a OB-algebra structure on ΘB by setting

ϕω(ξ ? η) := −Φ(ξ)ϕω(η). (4)

If ω is also homogeneous then the vector field defined by

E := ϕ−1
ω (R∞(ω)) (5)

rescales both the metric and the multiplication, that is,

LieE (?) = ? and LieE (s1
∞) = C · s1

∞ (6)

for some C ∈ C.

Theorem 1 ([16]). If ω is a primitive form, the triple (B, ?, s1
∞) is a Frobenius manifold. If ω is also homogeneous,

then the vector field E defined in (5) is the Euler vector field of the Frobenius manifold (B, ?, s1
∞).

Remark 2. We finish this section with a remark that simplifies enormously the construction of Frobenius manifolds
from families of meromorphic connections. Namely, if B is simply connected, it is enough to check the existence of
the primitive form at one single value of the parameter space B. This result is proved in a detailed manner in [16], but
it goes back to the work of B. Dubrovin on isomonodromic deformations.

3. Functions on curves

Let us recall the definition of the Milnor number of a function f0 on a curve-germ given by Mond and van Straten
in [15].
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Definition 3. Let (C, 0) ↪→ (Cn+1, 0) be a reduced curve-germ and let f0 : (C, 0) → (C, 0) be a function non-
constant on any branch. The Milnor number µ of f0 is defined as

µ := dim
C

ωC,0

OC,0d f0
(7)

where ωC,0 = ExtnOCn+1,0
(OC,0,Ωn+1

Cn+1,0) denotes the dualising module of OC,0.

Remark 4. The authors in [15] show that if the curve is unobstructed (i.e. the second cotangent cohomology group
T 2

C,0 vanishes) then the Milnor number is preserved under flat deformation of (C, 0) and arbitrary deformation of f0.
More precisely, if g : (C, 0) → (B, 0) is a flat deformation of (C, 0) and f : (C, 0) → (C, 0) is an extension of f0 to
(C, 0), then ωC/B,0/OC,0d f is a free OB,0-module of rank µ (here ωC/B,0 denotes the relative version of the dualising
module).

In the case of complete intersection curves the Milnor number is relatively easy to compute. If (C, 0) ⊂ (Cn+1, 0)

is a complete intersection curve defined by g1, . . . , gn , the dualising module ωC,0 can be identified with the module
of meromorphic 1-forms ω on (C, 0) such that ω ∧ dg1 ∧ · · · ∧ dgn ∈ OC,0 ⊗ Ωn+1

Cn+1,0. It is therefore customary to
write ωC,0 = OC,0α where

α =
dx1 ∧ · · · ∧ dxn+1

dg1 ∧ · · · ∧ dgn
. (8)

Remark 5. In fact, the dualising module can always be identified with a certain submodule of meromorphic 1-forms
with poles at the singular locus of (C, 0), not only in the case of complete intersection curves (e.g. [3]). Interpreting
holomorphic 1-forms as meromorphic forms, we obtain the so-called class map cl : ΩC,0 → ωC,0. In the case of
complete intersections, this map can be described explicitly using α. If Mi denotes the minor of the Jacobian matrix
of g = (g1, . . . , gn) obtained by deleting the i-th column, we have dxi = (−1)i−1 Miα. This is the class map and we
have

cl(ΩC,0) =
Jg + (g1, . . . , gn)

(g1, . . . , gn)
α (9)

where Jg denotes the ideal generated by Mi , i = 1, . . . , n + 1.

Given now f0 : (C, 0) → (C, 0), let f be a representative of f0 in OCn+1,0. We can write d f0 = Jα where J is the
Jacobian determinant of the map ϕ = ( f, g1, . . . , gn) : (Cn+1, 0) → (Cn+1, 0). Hence µ = OC,0/(J ) and using the
Lê–Greuel formula we see that

µ = µ1 + µ2 (10)

where µ1 denotes the Milnor number of (C, 0) and µ2 that of the zero-dimensional complete intersection defined by
ϕ.

An unfolding of f over (B, 0) = (Cm, 0) is a function F : (Cn+1
× B, 0) → (C, 0) together with a fibration

(g, I) : (Cn+1
× B) → (Cn

× B, 0) such that F |C0 = f0. We say that F is a miniversal unfolding (resp. versal) if the
Kodaira–Spencer map

ΘB,0 3
∂

∂ui
7→

∂ F
∂ui

∈
OC0×B,0

(J )
(11)

is an isomorphism (resp. a surjection) of OB,0-modules. Here (u1, . . . , um) denote coordinates on (B, 0). Notice that
if g : U → V is an appropriate small representative of g, conservation of the Milnor number implies that the map

ΘV 3
∂

∂ui
7→

∂ F
∂ui

∈ g∗

(
OU

(J )

)
(12)

is an isomorphism (resp. surjection) of sheaves of OV -modules. Hence, if Ct denotes the fibre g−1(t), the restriction
of F to Ct × V is a miniversal deformation of F |Ct in the usual left-equivalence sense for multigerms.
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Notice also that the isomorphisms (11) and (12) induce structures of OB-algebras on the tangent sheaf ΘB . It is
proved in [5] that these multiplicative structures satisfy a certain integrable condition turning them into F-manifolds
(see [9,10]).

3.1. The quasi-homogeneous case

As noted in Remark 4, the Milnor number is locally preserved under deformations. Here we wish to show that in
the quasi-homogeneous case it is actually globally preserved. Later, this will justify the use of algebraic forms to study
the Gauss–Manin system.

Most of the calculations that follow can be carried out for the case of complete intersection curve singularities and
we do so. However, our techniques can only be used to construct Frobenius manifolds for functions on plane curves as
it is in this case that we are able to extract information about the spectrum of the restriction of the miniversal unfolding
of f0 to the Milnor fibre of the singularity g.

Let us begin by introducing some notation that will be kept for the remainder of this article. Let O denote the
polynomial ring C[x1, . . . , xn+1]. We make O into a graded ring by assigning the positive rational weight pi to the
variable xi . Homogeneity will always mean homogeneity with respect to this grading. Let us be given

(1) a polynomial map g : Cn+1
→ Cn where gi is homogeneous of degree ei ; we denote the fibre over t ∈ Cn by Ct

and suppose that the 0-fibre C0 is not smooth (see Remark 6 below);
(2) a homogeneous polynomial f ∈ O of degree 1; we write ft for the restriction of f to the fibre Ct and assume that

f0 is not constant on any branch of C0.

Remark 6. The smooth case is exceptional as it is the only case for which f belongs to its Jacobian algebra. On the
other hand, the smooth case corresponds to the deformation of the Aµ-singularity in one variable, and it is well known
that the base space of its miniversal deformation does have a Frobenius structure.

Let α = dx1 ∧ · · · ∧ dxn+1/dg1 ∧ · · · ∧ dgn and let ωg be the relative dualising module. As before, let J be the
Jacobian determinant of ( f, g1, . . . , gn) so that d f = Jα. As J is also homogeneous, the only critical point of f0 is
the origin and µ = dimCO/(g1, . . . , gn, J ). The following proposition shows that this is also the sum of the Milnor
numbers at the critical points of ft . Let (t1, . . . , tn) be coordinates on the target space of g.

Proposition 7. The C[t1, . . . , tn]-module O/(J ) is free of rank µ.

Proof. The module O/(J ) can be seen as a graded module over the graded ring C[t1, . . . , tn] where ti acts by
multiplication by gi . As ωC0/OC0 d f ' O/(g1, . . . , gn, J ) is a finite dimensional vector space it follows from the
graded Nakayama lemma thatO/(J ) is finitely generated (we recall that the graded version of Nakayama lemma does
not require that the module O/(J ) be finitely generated). As (g1, . . . , gn, J ) is a regular sequence, the graded version
of the Auslander–Buchsbaum formula tells us that O/(J ) is free as C[t1, . . . , tn]-module. �

4. The Gauss–Manin system

We keep the notation and hypothesis introduced in Section 3.1. Let ωg be the relative dualising module of g. It is
a free O-module of rank 1 generated by the form α defined in (8). We define the (algebraic) Gauss–Manin system of
f relative to g as the module

G :=
ωg[τ, τ

−1
]

(d − τd f ∧)O[τ, τ−1]

where d denotes the relative differential with respect to g.
The module G is a C[t1, . . . , tn, τ, τ−1

]-module endowed with a partial integrable connection with respect to ∂τ

defined as

∇̂∂τ [ω] = [− f ω]. (13)

We also consider the (relative) Brieskorn lattice G, that is, the image of the canonical map ωg[τ
−1

] → G. It is a
lattice of G as the following proposition shows:
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Proposition 8. G is a free C[t1, . . . , tn, τ−1
]-module of rank µ.

Proof. According to Proposition 7, let h1, . . . , hµ be a basis of the free C[t1, . . . , tn]-module O/J consisting of
homogeneous elements. Let ωi = hiα and let ω = a0α ∈ ωg . Then there exist unique c1, . . . , cµ ∈ C[t1, . . . , tn] such
that a0 = c1h1 +· · ·+cµhµ+a′

0 J , which implies that ω = c1ω1 +· · ·+cµωµ+a′

0d f = c1ω1 +· · ·+cµωµ+τ−1da′

0.
Writing da′

0 = a1α we see that deg a0 = deg a1 + 1. The proposition follows by iteration. �

Let Ωg = Ω1
Cn /

∑n
i=1 Odgi be the module of relative holomorphic (algebraic) forms. We have a relative class map

defined analogously to the absolute case (see Remark 5):

cl : Ωg → ωg, cl(dxi ) = (−1)i−1 Miα (14)

We begin by studying the action of ∂τ on the forms in cl(Ωg) ⊂ ωg , i.e., dualising forms without poles. Recall that
we are excluding the case in which C0 is smooth.

Lemma 9. Let I = (g1, . . . , gn) and let Jg be the ideal generated by all the maximal minors of the Jacobian matrix
of g. The sequence

0 −→
Jg + I
I + (J )

−→
O

I + (J )

f ·
→

O
I + (J )

−→
O

( f ) + I + (J )
−→ 0 (15)

is exact.

Proof. Let µ1 be the Milnor number of C0 and µ2 that of the zero-dimensional complete intersection defined by
ϕ := ( f, g1, . . . , gn). We know that µ = µ1 + µ2. Since f and gi are homogeneous, we have

∂ f
∂x1

. . .
∂ f

∂xn+1
∂g1

∂x1
. . .

∂g1

∂xn+1
· · ·

∂gn

∂x1
. . .

∂gn

∂xn+1




p1x1
p2x2
· · ·

pn+1xn+1

 =


f

e1g1
. . .

en+1gn+1

 . (16)

As J is the determinant of the first matrix on the left, Cramer’s rule says

J · (pi xi ) =

(i)∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ f
∂x1

. . . f . . .
∂ f

∂xn+1
∂g1

∂x1
. . . e1g1 . . .

∂g1

∂xn+1
· · ·

∂gn

∂x1
. . . en+1gn+1 . . .

∂gn

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)i+1 f Mi mod I (17)

where Mi is the minor of the Jacobian matrix of g obtained by deleting the i th column. From here we see that
f Jg ⊂ I + (J ). On the other hand, we have an exact sequence

0 −→
( f ) + I + (J )

( f ) + I
−→

O
( f ) + I

−→
O

( f ) + I + (J )
−→ 0 (18)

where the middle term has dimension µ2 + 1 (cf. [12], Prop. 5.12). Since the socle of O/I + ( f ) is generated by the
Jacobian determinant J (e.g. [11]) we conclude that the first term of (18) has dimension 1 and therefore

dim
C

O
( f ) + I + (J )

= µ2. (19)
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Going back to the original sequence (15) we conclude that the kernel of f · has dimension µ2. That µ2 is also the
dimension of the first term of (15) follows from one more exact sequence:

0 −→
Jg + I
I + (J )

−→
O

I + (J )
−→

O
Jg + I

−→ 0. (20)

The middle and last term of the above sequence have dimension µ = µ1 + µ2 and µ1 respectively (e.g. [12],
Prop. 9.10). Therefore the first term has dimension µ2 and the lemma follows. �

Using the class map cl : ΩC0 → ωC0 introduced in Remark 5, the previous lemma can be restated as follows:

Corollary 10. cl(ΩC0 )

OC0 d f = ker
(

f · :
ωC0

OC0 d f →
ωC0

OC0 d f

)
.

The following notation will be useful for describing the action of ∂τ on cl(Ωg).

Notation. We set e =
∑n

i=1 ei , p =
∑n+1

i=1 pi and for a homogeneous element h ∈ O, we define

ν(h) := deg h + p − e.

We will also write ν(ω) := ν(h) where ω = hα.

Remark 11. Notice that for ω = hα with h homogeneous we have LieẼ (ω) = ν(h)ω, where Ẽ denotes the Euler
vector field on O. Also, if h ∈ Jg and as before we denote by Mi the minor of the Jacobian matrix of g obtained by
deleting the i-th columns, then

deg(h) ≥ min {deg Mi : i = 1, . . . , n + 1} = e − p + min {pi : i = 1, . . . , n + 1} . (21)

It follows that ν(ω) > 0.

Lemma 12. Let ω ∈ cl(Ωg) be a homogeneous 1-form. Then, in G we have

τ∂τ [ω] = −ν(ω)[ω] +

n∑
j=1

t jω j + τ

n∑
j=1

t jω
′

j (22)

with ν(ωi ) = ν(ω) − e j and ν(ω′

j ) = ν(ω) + 1 − e j (if ωi , ω
′

j 6= 0).

Proof. By linearity, we can assume that ω = hdxn+1 with h homogeneous. As dxn+1 = (−1)n Mn+1α, we see
that ν(ω) = deg h + pn+1. Let us introduce some helpful notation for carrying out the calculation: i∂xi

denotes the
contraction with respect to the vector field ∂xi , in+1 = i∂n ◦ · · · ◦ i∂1 and in+1, j = i∂n ◦ · · · ◦ î∂ j ◦ · · · ◦ i∂1 . Writing
V = dx1 ∧ · · · ∧ dxn+1 and dxn+1 = in+1V we have

−τ ∇̂τ [ω] = −τ∂τ [hin+1V ] = τ [hin+1( f V )] = τ [hin+1(d f ∧ i Ẽ V )]

= τ

n∑
j=1

(−1) j+1 [h(i∂ j d f ) ∧ in+1, j i Ẽ V
]
+ (−1)nτ

[
hd f ∧ in+1i Ẽ V

]
= τ

n∑
j=1

(−1) j+1 [h(i∂ j d f ) ∧ in+1, j i Ẽ V
]
+ τ

[
hd f ∧ i Ẽ in+1V

]
= [di Ẽω] + τ

n∑
j=1

(−1) j+1 [h(i∂ j d f ) ∧ in+1, j i Ẽ V
]

= [LieẼ (ω) − i Ẽ dω] + τ

n∑
j=1

(−1) j+1 [h(i∂ j d f ) ∧ in+1, j i Ẽ V
]

= ν(ω)[ω] − [i Ẽ dω] + τ

n∑
j=1

(−1) j+1 [h(i∂ j d f ) ∧ in+1, j i Ẽ V
]
.
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Multiplying the second summand by dg1 ∧ · · · ∧ dgn and using that i Ẽ dgi = ei gi we see that i Ẽ dω =
∑n

j=1 t jω j
where ν(ω j ) = ν(ω) − e j (if ω j 6= 0), and analogously for the other summand. This can also be seen by noticing that
the expression (22) is homogeneous where deg τ = −1. �

Corollary 13. For ω ∈ cl(ΩC0), we have τ∂τ [ω] = −ν(ω)[ω] in G0 = G/mCn ,0G.

4.1. V -filtration and spectral numbers

For a fixed point t ∈ Cn , set Gt = G/mCn ,t G and analogously G t = G/mCn ,t G. Let us recall the definition of the
Malgrange–Kashiwara V•-filtration for Gt . It is the unique filtration V•(Gt ) indexed by Q such that
(1) Vλ(Gt ) is C[τ ]-free and C[τ, τ−1

] ⊗C[τ ] Vλ(Gt ) = Gt for all λ ∈ Q;
(2) τ Vλ(Gt ) ⊂ Vλ−1, ∂τ Vλ(Gt ) ⊂ Vλ+1 and
(3) the action of τ∂τ + λ is nilpotent on the quotient grV

λ (Gt ) := Vλ(Gt )/V<λ(Gt ).

Such a filtration exists and is unique (e.g. [2], pg. 113). Moreover, there exists a finite subset A ⊂ [0, 1) such that
grV

λ (Gt ) = 0 for all λ 6∈ A + Z.
The filtration V•(Gt ) induces a filtration on G t/τ

−1G t . The corresponding graded part is given by

grV
λ (G t )/τ

−1G t =
Vλ(Gt ) ∩ G t

Vλ(Gt ) ∩ τ−1G t + V<λ(Gt ) ∩ G t
.

Let d(λ) denote the dimension as a complex vector space of grV
λ (G t )/τ

−1G t . The set of pairs (λ, d(λ)) for which
d(λ) 6= 0 is called the spectrum of (Gt , G t ).

We can use Lemmas 9 and 12 to compute the V•-filtration of the Gauss–Manin system of the function f0 and
for the case of plane curves, for any ft . The linear map (− f0)· : ωC0/OC0 d f0 → ωC0/OC0 d f0 is nilpotent and
homogeneous. Hence its Jordan basis induces a homogeneous basis of G of the following form:[

ωi
1

]
=

[
(− f )iω0

1

]
, i = 0, . . . , N1[

ωi
2

]
=

[
(− f )iω0

2

]
, i = 0, . . . , N2

. . .[
ωi

M

]
=

[
(− f )iω0

M

]
, i = 0, . . . , NM[

ω0
M+1

]
, . . . ,

[
ω0

µ2

]
.

(23)

Notice that there are exactly µ2 Jordan blocks (see (15)). It is helpful to set ν
j
i = ν(ω

j
i ). Consider now the following

change of basis of G:

ω̃
j
i =


[
ω

j
i

]
+ (ν

j
i − 1)τ−1

[
ω

j−1
i

]
if ν

j
i > 1[

ω
j
i

]
if ν

j
i ≤ 1.

(24)

Notice that, a priori it could happen that ν0
i > 1 and the above definition would not be correct. But this is not the case

as the following lemma shows:

Lemma 14. We have ν0
i ≤ 1 for all i = 1, . . . , µ2.

Proof. The socle of the zero-dimensional complete intersection defined by ( f ) + I has degree 1 + e − p. Hence all
the elements of degree greater than 1 + e − p are contained in the image of the multiplication by f and the lemma
follows. �

Let us set

λ
j
i :=


1 if ν

j
i > 1

ν
j
i if 0 ≤ ν

j
i ≤ 1

0 if ν
j
i < 0
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and define λ(τ kω̃
j
i ) := λ

j
i − k. We extend this definition to an arbitrary element ω ∈ G0 by writing ω as a linear

combination of ω̃
j
i with coefficients in C[τ, τ−1

] and taking the maximum of λ(τ kω̃
j
i ) among the terms appearing in

the expression of ω. Finally, we set

Wλ(G0) := {ω ∈ G0 : λ(ω) ≤ λ} . (25)

Theorem 15. The filtration W•(G0) is the Malgrange–Kashiwara V•(G0)-filtration. Hence the numbers λ
j
i together

with its multiplicities form the spectrum of (G0, G0).

Proof. The filtration W• clearly satisfies the first two defining properties of the V•-filtration. It thus suffices to check
that τ∂τ + λ is nilpotent on grW

λ G0 for λ ∈ [0, 1]. Notice first that by definition we have f ω
Ni
i ∈ OC0 d f . With

Corollary 10 it follows that ω
Ni
i ∈ cl(ΩC0). A straightforward calculation together with Corollary 13 shows that

if j < Ni then τ∂τ ω̃
j
i =


τ ω̃

j+1
i if ν

j
i ≤ 0

−ν
j
i ω̃

j
i + τ ω̃

j+1
i if 0 < ν

j
i ≤ 1

−ω̃
j
i + τ ω̃

j+1
i if ν

j
i > 1,

and if j = Ni τ∂τ ω̃
Ni
i = −λ

Ni
i ω̃

Ni
i .

(26)

We show the nilpotency of τ∂τ +λ with some detail for the first case in (26) as the others are analogous. As ν
j
i ≤ 0 we

have j < Ni (see Remark 11). If ν
j
i < 0, then ν

j+1
i < 1 so that τ∂τ ω̃

j
i ∈ W<0(G). If ν

j
i = 0 then ν

j+1
i = 1 and we get

(τ∂τ )
2ω̃

j
i = τ(τ∂τ + 1)ω̃

j+1
i =

{
τ 2ω̃

j+2
i if j + 1 < Ni

0 if j + 1 = Ni .
(27)

In both cases we have (τ∂τ )
2ω̃

j
i ∈ W<0(G). �

Corollary 16. In the basis of G0 induced by ω̃
j
i , the matrix of the action of ∂τ takes the form

(A0 + A∞τ−1)dτ (28)

where A0 and A∞ are constant matrices, with A∞ diagonal. In particular, G0 extends to a bundle on P1 with
logarithmic connection on τ = 0.

In the case of plane curves, it turns out that the spectrum of the restriction ft of f to the fibre Ct coincides with that of
C0. More precisely, we define the W•(Gt)-filtration analogously to (25) but using coefficients in C[t, τ, τ−1

]. In the
next lemma we collect two easy remarks that are used repeatedly in the proof of the next theorem.

Lemma 17. We have ν
Ni
i ≤ 1 − e + p for any i = 0, . . . , ν2 and

ω
j
i ∈ W

ν
j
i

if ν
j
i ≥ 0 and

ω
j
i ∈ W0 if ν

j
i < 0.

(29)

Proof. For the first claim notice that the socle of O/(g, J ) has degree 1 + 2e − 2p as can be seen from the
Hilbert–Poincaré series of this graded ring.

Regarding (29), it clearly holds if ν
j
i ≤ 1 for ω

j
i = ω̃

j
i ∈ W

ν
j
i
. If 1 < ν

j
i ≤ 2, then j ≥ 1 (see Lemma 14) and

ω
j
i = ω̃

j
i − (ν

j
i − 1)τ−1ω̃

j−1
i ∈ W

ν
j−1
i +1 = W

ν
j
i
. (30)

If 2 < ν
j
i ≤ 3 then

ω
j
i = ω̃

j
i − (ν

j
i − 1)τ−1ω

j−1
i ∈ W

ν
j−1
i +1 = W

ν
j
i

for 1 < ν
j−1
i ≤ 2 so (30) applies. The claim follows easily by induction. �
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Theorem 18. If n = 1, the filtration W•(Gt ) is the Malgrange–Kashiwara V•(Gt )-filtration for any t ∈ C.

Proof. The particularity of the family of plane curves is that (g) = I ⊂ Jg . It follows as in the proof of the previous
theorem that ω

Ni
i ∈ cl(Ωg). We only need to check the third defining property of the V•-filtration, the other two being

evident. The action of ∂τ is now

if j < Ni then τ∂τ ω̃
j
i =


τ ω̃

j+1
i if ν

j
i ≤ 0

−ν
j
i ω̃

j
i + τ ω̃

j+1
i if 0 < ν

j
i ≤ 1

−ω̃
j
i + τ ω̃

j+1
i if ν

j
i > 1,

and if j = Niτ∂τ ω̃
Ni
i = −λ

Ni
i ω̃

Ni
i + tωi,1 + τ tωi,2,

(31)

where we have used the Eq. (22) in Lemma 12. We begin by showing that

ωi,1, τωi,2 ∈ W
<λ

Ni
i

. (32)

Let us first consider the case of ωi,1. According to Lemma 12 we have ν(ωi,1) = ν
Ni
i − e, which in turn implies

ν(ωi,1) ≤ 1 − p in view of Lemma 17. If, as in the proof of Proposition 8, we write

ωi,1 =

∑
k,l

cl
k(t)ω

l
k + h Jα (33)

we see that h = 0 for ν(hd f ) = 1 + deg(h). Also, if cl
k(t) 6= 0, then ν(ωl

k) ≤ ν(ωi,1) ≤ 1 − p for all the non-zero
elements of the sum (33). Notice that then νl

k < 1 for the non-zero terms of the sum (33) so that ω̃l
k = ωl

k and (33)
becomes

ωi,1 =

∑
k,l

cl
k(t)ω̃

l
k, λl

k ≤ ν
Ni
i − e ≤ 1 − p. (34)

Since ω
Ni
i ∈ cl(Ωg), we have ν

Ni
i > 0 according to Remark 11. Thus Eq. (34) implies that ωi,1 ∈ W

<λ
Ni
i

no matter

whether ν
Ni
i is greater than, less than or equal to 1.

A similar reasoning applies to ωi,2. As ν(ωi,2) = ν
Ni
i − e + 1, if we write

ωi,2 =

∑
k,l

cl
k(t)ω

l
k + h Jα, (35)

those ωl
k occurring in the sum (36) with cl

k 6= 0 must satisfy νl
k ≤ ν(ωi,2) = ν

Ni
i + 1 − e ≤ 2 − p. Also

deg h = ν(ωi,2) − 1 = ν
Ni
i − e and as we have the upper bound ν

Ni
i ≤ 1 + e − p, it implies that deg h ≤ 1 − p.

Eq. (35) becomes

ωi,2 =

∑
k,l

cl
k(t)ω

l
k + τ−1dh. (36)

where ν(h) = 1 − p. If we write again dh =
∑

dl
k(t)ω

l
k + h′ Jα, we can reason like in (33) to see that h′

= 0 and if
dl

k(t) 6= 0, then νl
k ≤ 1 − p. We finally obtain that

ωi,2 =

∑
k,l

cl
k(t)ω

l
k + τ−1

∑
k,l

dl
kω

l
k (37)

where νl
k ≤ ν

Ni
i + 1 − e ≤ 2 − p for those ωl

k appearing in the first summand and νl
k ≤ ν

Ni
i − e ≤ 1 − p for those in

the second one. Using Lemma 17, we see that τωi,2 ∈ W
<λ

Ni
i

no matter whether ν
Ni
i is greater than, equal to or less

than 1 (recall again that ν
Ni
i > 0).
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With (32) in hand, it is possible to prove Theorem 18 by a case-by-case analysis. For example, for the case j < Ni

with ν
j
i = 0 Eq. (27) becomes

(τ∂τ )
2ω̃

j
i = τ(τ∂τ + 1)ω̃

j+1
i =

{
τ 2ω̃

j+2
i if j + 1 < Ni

τ tωi,1 + τ 2tωi,2 if j + 1 = Ni .
(38)

In the second case above, we have ν
Ni
i = 1 and we have seen that ωi,1, τωi,2 ∈ W

<λ
Ni
i

= W<1 so that

(τ∂τ )
2ω

Ni −1
i ∈ W<0 = W

<λ
Ni −1
i

. �

We can then use the results of [7] to construct Frobenius manifolds on the base space of the miniversal deformation
of ft for t 6= 0.

Corollary 19. If n = 1, the class of α in G t is a primitive form for any t. Hence for any t 6= 0, the base space of the
miniversal deformation of ft has the structure of a massive Frobenius manifold.

Proof. Let ω
j
i = h( j)

i α be the basis of G0 defined in (23). Then the unfolding F = f +
∑µ2

i=1
∑Ni

j=0 u( j)
i h( j)

i is
miniversal. The connection with respect to the deformation parameters is given by

∇̂∂
u( j)

i

[ω] =

[
∂ω

∂u( j)
i

]
− τ

[
∂ F

∂u( j)
i

ω

]
. (39)

As α = ω0
1 we have

∇̂∂
u( j)

i

[α] = −τ [ω
j
i ], ∇̂∂τ [α] = [ω1

1] −

µ2∑
i=1

Ni∑
j=0

u( j)
i [ω

j
i ], (40)

(for the second equation above, notice that α 6∈ cl(ΩC0) since C0 is singular; thus N1 > 0 and ω1
1 is defined). It follows

that α is a primitive form. The existence of the metric follows from the microlocal Poincaré duality (cf. [7]). Finally,
for a generic value of u, all the critical points of F on Ct × {u} are Morse; hence the multiplication is generically
semisimple. �

It is known that the metric is given by the sum of the residues at the critical points. More precisely, if (u1, . . . , uµ)

are parameters of the base space of the miniversal deformation F : (C2
× B, 0) → (C, 0) and d F = JFα denotes the

relative differential, then〈
∂

∂ui
,

∂

∂u j

〉
t
=

∫
∂Ct

 ∂ F
∂ui

∂ F
∂u j

JF
α

∣∣∣∣∣∣
Ct

(41)

where ∂Ct is the boundary of an appropriate representative of the Milnor fibre of g.

Corollary 20. The formula (41) for t = 0 together with the multiplication defined by (11) defines the structure of the
non-massive Frobenius manifold on B.

Proof. We have
〈

∂
∂ui

, ∂
∂u j

〉
t

→

〈
∂

∂ui
, ∂

∂u j

〉
0

when t → 0. The flatness of 〈−, −〉t implies that of 〈−, −〉0 as can be
seen, for example, writing out explicit formulas for the curvature in terms of the Christoffel symbols. The existence
of a potential can be translated into the flatness of the first structure connection (e.g. [13], Th. 1.5). More precisely,
for each t , let t

∇ be the Levi-Civita connection of 〈−, −〉t . The first structure connection is defined as

t
∇z,∂ui

∂u j :=
t
∇∂ui

∂u j + z∂ui ?t ∂u j . (42)

It is of course closely related to the Gauss–Manin connection ∇̂. Notice that ∂ui ?t ∂u j → ∂ui ?0 ∂u j when t → 0, and
hence t

∇ →
0
∇ and the result follows. �



1840 I. de Gregorio / Journal of Geometry and Physics 57 (2007) 1829–1841

5. An example: Linear functions on the Ak-singularity

Let us illustrate our construction with a worked-out example. We consider the curve C0 defined by g(x, y) =

xk
+ y2

= 0, k ≥ 2, and the function f0 given by the restriction of f (x, y) = x to C0.
Miniversal deformation. The classes of 1, . . . , xk−1 form a C-basis of the Jacobian algebra OC0/(2y) and hence a
miniversal unfolding is given by F = f + u1xk−1

+ · · · + uk−1x + uk .
Spectrum. For a homogeneous polynomial h we have

ν(h) = deg(h) −
k − 2

2
.

According to Theorem 15, the spectrum of ft = f |Ct is{(
0,

k
2

)
,

(
1,

k
2

)}
if k is even and,{(

0,
k − 1

2

)
,

(
1
2
, 1
)

,

(
1,

k − 1
2

)}
if k is odd.

(43)

Nilpotent Frobenius structure. If we set F ′
=

∂ F
∂x , the multiplication table on ΘB,0 is given by the isomorphism

∂ui 7→ xk−i
∈ π∗

(
O

(xk + y2, 2yF ′)

)
(44)

whereO denotes the sheaf of holomorphic functions on the variables x, y, u1, . . . , uk and π : C0×(B, 0) → (B, 0) is
the canonical projection. The ideal (xk

+ y2, 2yF ′) defines in C0 × B a scheme with two components: W1 := {0}× B
and the (reduced) variety W2 defined by F ′

= 0. As W1 already has multiplicity k = µ, the F-manifold structure
extends to B \ π(W2) (notice that 0 6∈ π(W2)). We see that this F-manifold structure is purely nilpotent, in the sense
that if i 6= k (i.e., if ∂ui is not the identity), we have ∂ui ? · · · ? ∂ui = 0 where the product occurs at most k times. We
remark that this is always the case if the function f0 is the restriction of a linear function as all the critical points are
provided by the singular curve.

The metric is not easy to give explicitly, only its restriction to T0 B. We have

2π iRes(x jα) =

∫
∂C0

(
x jα

J

)∣∣∣∣
C0

=

∫
∂C0

(
x j dx
4y2

)∣∣∣∣
C0

=

∫
∂C0

(
x j dx
−4xk

)∣∣∣∣
C0

. (45)

Hence the metric in the basis ∂ui |0 is simply given by the matrix with all its entries equal to −1/4 in the anti-diagonal,
and 0 everywhere else.
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[15] D. Mond, D. van Straten, Milnor number equals Tjurina number for functions on space curves, J. London Math. Soc. (2) 63 (1) (2001)

177–187.
[16] C. Sabbah, Frobenius manifolds: Isomonodromic deformations and infinitesimal period mappings, Expo. Math. 16 (1) (1998) 1–57.
[17] K. Saito, Primitive forms for a universal unfolding of a function with an isolated critical point, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (3)

(1981) 775–792.
[18] K. Saito, Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (3) (1983) 1231–1264.
[19] M. Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1) (1989) 27–72.


	Some examples of non-massive Frobenius manifolds in singularity theory
	Introduction
	Preliminaries
	Functions on curves
	The quasi-homogeneous case

	The Gauss--Manin system
	 V -filtration and spectral numbers

	An example: Linear functions on the  Ak -singularity
	Acknowledgement
	References


